A Hybrid Constraint Programming / Local Search Approach to the Job-Shop Scheduling Problem
نویسندگان
چکیده
Since their introduction, local search algorithms – and in particular tabu search algorithms – have consistently represented the state-of-the-art in solution techniques for the classical job-shop scheduling problem. This is despite the availability of powerful search and inference techniques for scheduling problems developed by the constraint programming community. In this paper, we introduce a simple hybrid algorithm for job-shop scheduling that leverages both the fast, broad search capabilities of modern tabu search and the scheduling-specific inference capabilities of constraint programming. The hybrid algorithm significantly improves the performance of a state-of-the-art tabu search for the job-shop problem, and represents the first instance in which a constraint programming algorithm obtains performance competitive with the best local search algorithms. Further, the variability in solution quality obtained by the hybrid is significantly lower than that of pure local search algorithms. As an illustrative example, we identify twelve new best-known solutions on Taillard’s widely studied benchmark problems.
منابع مشابه
A New model for integrated lot sizing and scheduling in flexible job shop problem
In this paper an integrated lot-sizing and scheduling problem in a flexible job shop environment with machine-capacity-constraint is studied. The main objective is to minimize the total cost which includes the inventory costs, production costs and the costs of machine’s idle times. First, a new mixed integer programming model,with small bucket time approach,based onProportional Lot sizing and S...
متن کاملSolving the flexible job shop problem by hybrid metaheuristics-based multiagent model
The flexible job shop scheduling problem (FJSP) is a generalization of the classical job shop scheduling problem that allows to process operations on one machine out of a set of alternative machines. The FJSP is an NP-hard problem consisting of two sub-problems, which are the assignment and the scheduling problems. In this paper, we propose how to solve the FJSP by hybrid metaheuristics-based c...
متن کاملA New Multi-objective Job Shop Scheduling with Setup Times Using a Hybrid Genetic Algorithm
This paper presents a new multi objective job shop scheduling with sequence-dependent setup times. The objectives are to minimize the makespan and sum of the earliness and tardiness of jobs in a time window. A mixed integer programming model is developed for the given problem that belongs to NP-hard class. In this case, traditional approaches cannot reach to an optimal solution in a reasonable...
متن کاملCombining Constraint Programming and Local Search for Job-Shop Scheduling
Since their introduction, local search algorithms have consistently represented the state-ofthe-art in solution techniques for the classical job-shop scheduling problem. This is despite the availability of powerful search and inference techniques for scheduling problems developed by the constraint programming community. In this paper, we introduce a simple hybrid algorithm for job-shop scheduli...
متن کاملSolving Flexible Job Shop Scheduling with Multi Objective Approach
In this paper flexible job-shop scheduling problem (FJSP) is studied in the case of optimizing different contradictory objectives consisting of: (1) minimizing makespan, (2) minimizing total workload, and (3) minimizing workload of the most loaded machine. As the problem belongs to the class of NP-Hard problems, a new hybrid genetic algorithm is proposed to obtain a large set of Pareto-optima...
متن کامل